APCalculus - Rentz - Content Assessment (CON) - 30 minutes

START TIME:	Last Name	CCODE
STOP TIME:	Name Called By Period: (circle one) BLUE PD 4 Class: 2019(SR) 2020(JR) 2021(SOPH)	SCORE 0 6 / 17 pts
	Date:	%
NO CALCULATOR FOR THIS STANDARD!		
Show your work!		
Honor Code Reminders: Do your own work. No collaboration. Use only the technology approved by the teacher for this assessment. Do not discuss this assessment with other students prior to one week after the assessment UNLESS the teacher discusses details in class before that time.		

Do your best!

SECTION ONE: General Applications of The Integral Concept

[+1] 1. A sports arena opens 2 hours before the start of an event.

The graph below shows the <u>rate at which fans enter the arena</u> as a function of time. How many fans attended the event?

[+1] 2. <u>Write an expression</u> that would help you answer the following question easily if you could use a calculator. <u>You do not need to find the final solution in a simplified form.</u>

The water level in a waterway is changing at a rate of $\frac{4}{3}\sin(2-\frac{t}{2})$ centimeters per hour (where *t* is the number of hours since midnight). By approximately how many centimeters does the water level change between t = 1 and t = 5? (i.e. what is the net change in water level between 1:00 am and 5:00 am?)

[+1] 3. <u>Write an expression</u> that would help you to answer the following question easily if you could use a calculator. <u>You do not need to find the final solution in a simplified form.</u>

The depth of the water in a bird bath is changing at a rate of r(t) = 0.25t - 0.1 millimeters per hour (where *t* is the time in hours). At time t = 0, the depth of the water is 35 millimeters. What is the depth of the water at t = 3 hours?

[+2] 4. The cumulative profit a business has earned is changing at a rate of r(t) dollars per day (where t is the time in days). In the first 30 days, the business earned a cumulative profit of \$1700.

(a) What does $1700 + \int_{30}^{90} r(t) dt$ represent?

(b) What are the units of measure for $1700 + \int_{30}^{90} r(t) dt$?

SECTION TWO: A Motion Problem

A particle is moving along the x-axis. Its velocity (in feet per second) is given by v(t) = 5t - 30. This velocity function is graphed in the following Desmos worksheet:

[+1]

1. Find the <u>(net) change in position</u> between times t = 0 and t = 10.

[+1]

2. If we start tracking the particle at time t = 0 when it is <u>at the *origin*</u> on the *x*-axis, what is its position at time t = 10 seconds?

[+1]

3. (In a different scenario) if we start tracking the particle at time t = 0 when it is <u>at</u> point (4,0) on the *x*-axis, what is its position at time t = 10 seconds?

[+1]

4. Find a formula for the position function s(t) in #3 when s(0) = 4.

[+1]

5. Find the average value of the original <u>velocity function</u> on the time interval *[0,10]*.

[+1]

6. Is your position function in #4 concave up or concave down? Justify your answer using calculus concepts.

SECTION THREE: Integral Notation & Function Attributes

The portion of the graph of function f on the interval [0, 4] is shown below. The graph of f contains the points (0,6), (2,5), and (4,7) as shown.

SECTION FOUR: Second Fundamental Theorem of Calculus & Chain Rule

[+1] Simplify (without the derivative and integral symbols):

$$\frac{d}{dx}\int_0^{x^3} (t^4) dt$$

SECTION TWO: A Motion Problem - SCRATCH PAPER

Extra Copy of Graph (since the problem on the test with answer space spans two pages)

A particle is moving along the x-axis. Its velocity (in feet per second) is given by v(t) = 5t - 30. This velocity function is graphed in the following Desmos worksheet:

