APCalculus - Rentz - Content Assessment (CON) - 30 minutes

Do your best!

SECTION ONE: General Applications of The Integral Concept

[+1] 1. A sports arena opens 2 hours before the start of an event.
The graph below shows the rate at which fans enter the arena as a function of time.
How many fans attended the event?

[+1] 2. Write an expression that would help you answer the following question easily if you could use a calculator. You do not need to find the final solution in a simplified form.

The water level in a waterway is changing at a rate of $\frac{4}{3} \sin \left(2-\frac{t}{2}\right)$
centimeters per hour (where t is the number of hours since midnight).
By approximately how many centimeters does the water level change
between $t=1$ and $t=5$?
(i.e. what is the net change in water level between 1:00 am and 5:00 am?)
[+1] 3 . Write an expression that would help you to answer the following question easily if you could use a calculator. You do not need to find the final solution in a simplified form.

The depth of the water in a bird bath is changing at a rate of $r(t)=0.25 t-0.1$ millimeters per hour (where t is the time in hours).
At time $t=0$, the depth of the water is 35 millimeters.
What is the depth of the water at $t=3$ hours?
[+2] 4. The cumulative profit a business has earned is changing at a rate of $r(t)$ dollars per day (where t is the time in days). In the first 30 days, the business earned a cumulative profit of $\$ 1700$.
(a) What does $1700+\int_{30}^{90} r(t) d t$ represent ?
(b) What are the units of measure for $1700+\int_{30}^{90} r(t) d t$?

SECTION TWO: A Motion Problem

A particle is moving along the x -axis. Its velocity (in feet per second) is given by $v(t)=5 t-30$. This velocity function is graphed in the following Desmos worksheet:

[+1]

1. Find the (net) change in position between times $t=0$ and $t=10$.
2. If we start tracking the particle at time $t=0$ when it is at the origin on the x-axis, what is its position at time $t=10$ seconds?
[+1]
3. (In a different scenario) if we start tracking the particle at time $t=0$ when it is at point $(4,0)$ on the x-axis, what is its position at time $t=10$ seconds?
[+1]
4. Find a formula for the position function $s(t)$ in $\# 3$ when $s(0)=4$.
[+1]
5. Find the average value of the original velocity function on the time interval [0,10].
[+1]
6. Is your position function in \#4 concave up or concave down?

Justify your answer using calculus concepts.

SECTION THREE: Integral Notation \& Function Attributes

The portion of the graph of function f on the interval [0,4] is shown below.
The graph of f contains the points $(0,6),(2,5)$, and $(4,7)$ as shown.

Standard N05 N06 FORM A

SECTION FOUR: Second Fundamental Theorem of Calculus \& Chain Rule
[+1] Simplify (without the derivative and integral symbols):

$$
\frac{d}{d x} \int_{0}^{x^{3}}\left(t^{4}\right) d t
$$

SECTION TWO: A Motion Problem - SCRATCH PAPER

Extra Copy of Graph
(since the problem on the test with answer space spans two pages)

A particle is moving along the x -axis. Its velocity (in feet per second) is given by $v(t)=5 t-30$. This velocity function is graphed in the following Desmos worksheet:

